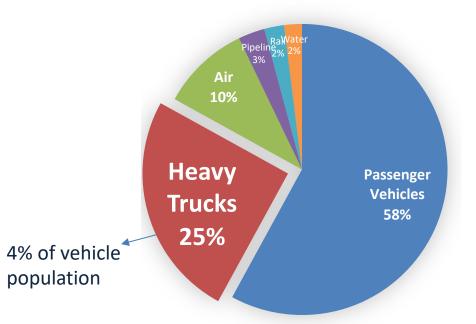
Follow the Sun and Go with the Wind: Carbon-Footprint Optimized Timely E-Truck Transportation

<u>Junyan Su</u>, Qiulin Lin, Minghua Chen City University of Hong Kong

06/22/2023

CityU 香港城市大學 CityUniversity of Hong Kong

ACM e-Energy 2023, Orlando, Florida, United States


US Trucking Industry: A Top-20 Economy with High Environmental Impact

U.S. freight tonnage: 11B (72% of all freight) U.S. freight revenue: <u>\$875.5B</u>

Rank	Country	GDP (USD billion)	
1	United States	23,315	
2	China	17,734	
3	Japan	4,940	
•••			
18	Saudi Arabia	833	
19	Turkey	815	
20	Switzerland	812	

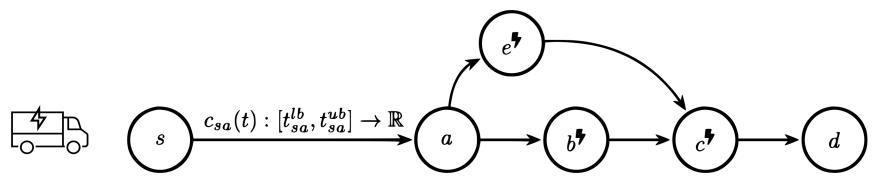
GDP rank in 2021 source: world bank

- Carbon emission of U.S. heavy trucks: 456.6M
- <u>25%</u> of transportation sector (8.8% of whole U.S.)

Carbon emissions of U.S. transportation sector source: transportation energy data book

E-Truck: Future Towards Net-Zero

□ High energy efficiency


- Electric motor: ~95%
- Internal combustion engine (ICE):
 ~35%

□ Improve the air quality

 Carbon optimized truck operation saves 28% carbon.

Carbon Footprint Optimized Timely Transportation

Objective

- Minimize the carbon footprint incurred at each charging stop

□ Constraints

- State of Charge (SoC) constraints
- Deadline constraint

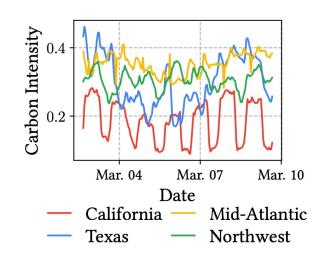
Design space

– Path planning, speed planning, and charge planning

Design Space

Charge planning

- □ When, where, and how long to charge
- Carbon intensity is diverse geographically and temporally
- Carbon footprint = carbon intensity × charged energy


Path Planning

Energy-related factors: distance, congestion, road type...

Speed Planning

A faster speed means more energy consumption

	Carbon intensity (kg/kWh)		
Coal	1.02		
Natural gas	0.39		
Petroleum	0.91		
Renewable	0		

Research Landscape

	Charge planning	Path planning	Speed planning	Hard deadline	Truck type	
[1,2,3]	N/A	\checkmark	\checkmark	\checkmark	ICE	
[4]	N/A	X	\checkmark	Х	ICE	
[5]	\checkmark	\checkmark	\checkmark	Х	Electric	
[6]	X	X	\checkmark	\checkmark	Electric	
Current practice	Human intelligence					
This work	\checkmark	\checkmark	\checkmark	\checkmark	Electric	

[1] L. Deng, et al, Energy-Efficient Timely Transportation of Long-Haul Heavy-Duty Trucks. IEEE Transactions on Intelligent Transportation Systems, 2017.

[2] Q. Liu, et al, Energy-Efficient Timely Truck Transportation for Geographically-Dispersed Tasks. IEEE Transactions on Intelligent Transportation Systems, 2019.

[3] W. Xu, et al, Ride the Tide of Traffic Conditions: Opportunistic Driving Improves Energy Efficiency of Timely Truck Transportation. IEEE Transactions on Intelligent Transportation Systems, 2023.

[4] E, Hellström, at al, Look-ahead control for heavy trucks to minimize trip time and fuel consumption. Control Engineering Practice, 2009.

[5] M. Strehler, et al, Energy-efficient shortest routes for electric and hybrid vehicles. Transportation Research Part B: Methodological, 2017.

[6] Y. Zhang, et al, Optimal Eco-driving Control of Autonomous and Electric Trucks in Adaptation to Highway Topography: Energy Minimization and Battery Life Extension. IEEE Transactions on Transportation Electrification, 2022.

Our Contributions

Important and challenging problem

We identify and study an important and challenging problem, namely the carbon footprint optimization problem for e-trucks

Novel formulation

 It reveals an elegant problem structure with low model complexity
 It is widely applicable beyond this work

Efficient algorithm

□ Performance guarantee:

- Convergence rate,
- Polynomial run time per iteration
- Performance bound

Extensive simulation

 Based on real-world traces
 Carbon-optimized solutions achieve up to 28% carbon reduction

The Carbon Footprint Optimization (CFO) Problem

Input

- **Graph** G = (V, E), speed limits
- Origin s, destination d, deadline
 T
- The e-truck parameters
- $\Box \quad \text{Charge functions } \phi(t)$
- **Carbon intensity functions** $\pi(\tau)$

Output

- \Box Path selection \vec{x}
- \Box Travel time \vec{t}

$\label{eq:charge} \Box \mbox{ Charge location } \vec{y}, \mbox{ wait time } \vec{t}^w, \\ \mbox{ charge time } \vec{t}^c \end{tabular}$

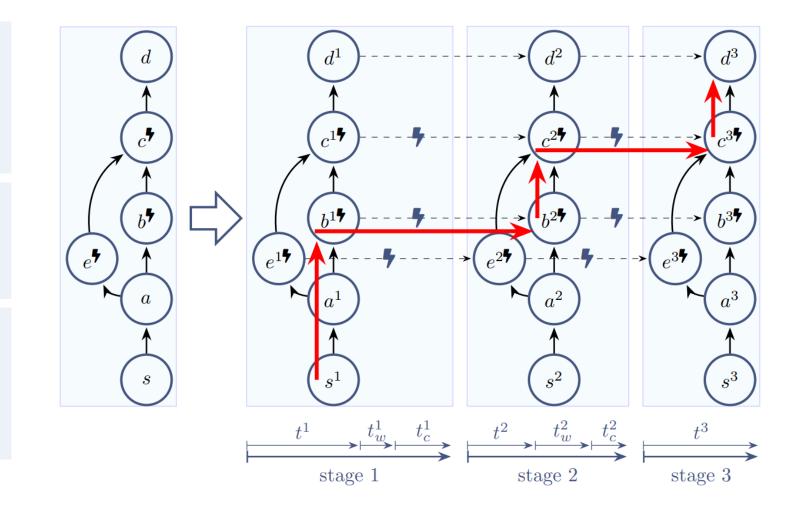
Objective

Minimize carbon footprint

Constraints

- Ensure positive state of charge (SoC) at each road segment
- Arrive the destination before deadline

Remark


- The CFO problem is NP-hard.
- Common approaches (e.g., branch and bound) incur a large time complexity

Explore Problem Structure: Stage-Expanded Graph

Key observation: Given the charging planning, we can efficiently solve subproblems between charging stops.

Benefits: It reveals an elegant problem structure with low model complexity

Result: The CFO problem is a Generalized Restricted Shortest Path (GRSP) problem on the stage-expanded graph

The Dual Subgradient Approach

$$\max_{\vec{\lambda} \ge 0} D(\vec{\lambda}) = \max_{\vec{\lambda} \ge 0} \min_{\substack{(\vec{x}, \vec{y}) \in \mathcal{P}, \\ \vec{\beta} \in S_{\alpha}, \vec{\tau} \in \mathcal{T}_{\tau}, \vec{t} \in \mathcal{T}}} L(\vec{x}, \vec{y}, \vec{t}, \vec{\beta}, \vec{\tau}, \vec{\lambda}) \leftarrow D(\lambda)$$

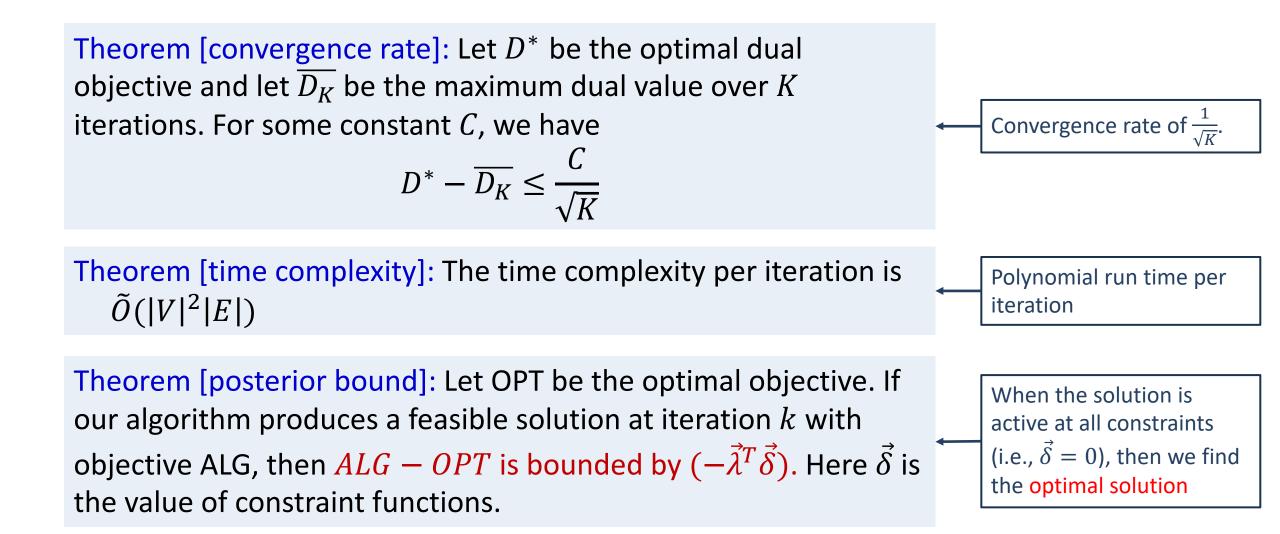
\Box At the iteration k

- Compute the dual function $D(\vec{\lambda}_k)$
 - Solve the easy subproblems in parallel
 - (Single-variable problem) determine the speed planning for each road segment
 - (4-variable problem) determine the charge scheduling for each charging station
 - (An integer problem) solve the path and charging location selection problem

– Update
$$\vec{\lambda}$$
 via the subgradient direction: $\vec{\lambda}_{k+1} = \left[\vec{\lambda}_k + \theta_k \frac{\partial D}{\partial \lambda}(\lambda_k)\right]_+$

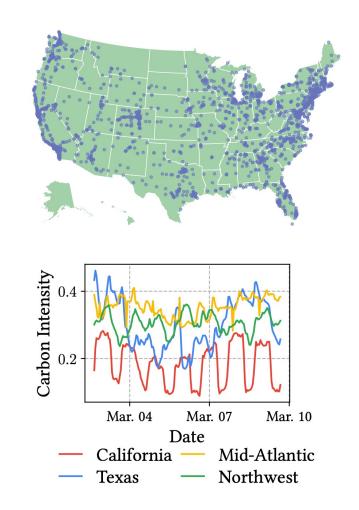
Solve the Integer Problem

At the iteration *k*


- Compute the dual function $D(\vec{\lambda}_k)$
 - Solve the easy subproblems in parallel
 - (Single-variable problem) determine the speed planning for each road segment
 - (4-variable problem) determine the charge scheduling for each charging station
 - (An integer problem) solve the path and charging location selection problem

- Update $\vec{\lambda}$ via the subgradient direction: $\vec{\lambda}_{k+1} = \left[\vec{\lambda}_k + \theta_k \frac{\partial D}{\partial \lambda}(\lambda_k)\right]_+$

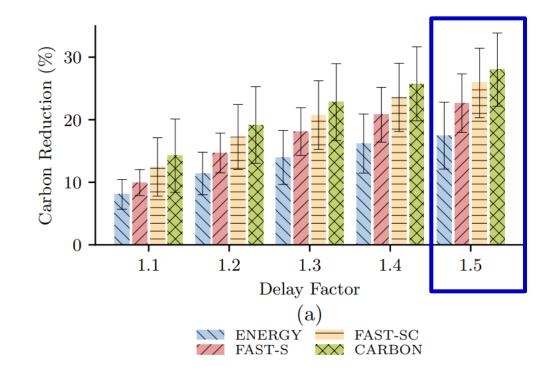
Theorem: The problem of determining path and charge locations is equivalent to a shortest path problem on an extended charging station graph


Intuition: The optimal values of the subproblems are the cost for each road segment and charging station

Performance Analysis

Simulation Setup

- Highway network: U.S. national highway network
 - 84,505 nodes and 178,238 edges
 - □ 2,555 charging stations
- 500 origin-destination pairs longer than 800 miles from Freight Analysis Framework (FAF)
- Carbon intensity data from U.S. Energy Information Administration (EIA)



Simulation Results

Compared to the fastest path
 The carbon-optimized solutions save up to 28% carbon footprint

Compared to energy-efficient solution The carbon-optimized solutions save up to 9% carbon footprint

Compared to ICE truck
 E-truck saves up to 59% carbon as compared to ICE trucks

Conclusion and Future Work

Summary
 Important and Challenging CFO problem
 Novel formulation and efficient approach which is widely applicable beyond CFO
 Simulation results: 28% carbon reduction

Future work Explore the potential of our approach in other applications Explore the problem with uncertainty

Thank you!

https://sujunyan.github.io/cfo-page/